Function and dynamics of slam in furrow formation in early Drosophila embryo.
نویسندگان
چکیده
The Drosophila embryo undergoes a developmental transition in the blastoderm stage switching from syncytial to cellular development. The cleavage furrow, which encloses nuclei into cells, is a prominent morphological feature of this transition. It is not clear how the pattern of the furrow array is defined and how zygotic genes trigger the formation and invagination of interphase furrows. A key to these questions is provided by the gene slam, which has been previously implicated in controlling furrow invagination. Here we investigate the null phenotype of slam, the dynamics of Slam protein, and its control by the recycling endosome. We find that slam is essential for furrow invagination during cellularisation and together with nullo, for specification of the furrow. During cellularisation, Slam marks first the furrow, which is derived from the metaphase furrow of the previous mitosis. Slightly later, Slam accumulates at new furrows between daughter cells early in interphase. Slam is stably associated with the furrow canal except for the onset of cellularisation as revealed by FRAP experiments. Restriction of Slam to the furrow canal and Slam mobility during cellularisation is controlled by the recycling endosome and centrosomes. We propose a three step model. The retracting metaphase furrow leaves an initial mark. This mark and the border between corresponding daughter nuclei are refined by vesicular transport away from pericentrosomal recycling endosome towards the margins of the somatic buds. Following the onset of zygotic gene expression, Slam and Nullo together stabilise this mark and Slam triggers invagination of the cleavage furrow.
منابع مشابه
Localization of RhoGEF2 during Drosophila cellularization is developmentally controlled by slam
Essential for proper function of small GTPases of the Rho family, which control many aspects of cytoskeletal and membrane dynamics, is their temporal and spatial control by activating GDP exchange factors (GEFs) and deactivating GTPase-activating-proteins (GAPs). The regulatory mechanisms controlling these factors are not well understood, especially during development, when the organization and...
متن کاملDynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo
The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) re...
متن کاملRab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster.
One of the most fundamental changes in cell morphology is the ingression of a plasma membrane furrow. The Drosophila embryo undergoes several cycles of rapid furrow ingression during early development that culminate in the formation of an epithelial sheet. Previous studies have demonstrated the requirement for intracellular trafficking pathways in furrow ingression; however, the pathways that l...
متن کاملCentrosomes: CNN's Broadcast Reaches the Cleavage Furrow
Centrosomin (CNN), a core Drosophila centrosome protein, interacts with the newly identified protein Centrocortin to promote cleavage furrow formation in the early embryo. Significantly, this activity is distinct from CNN's well-established role in centrosome-based microtubule organization.
متن کاملDev120998 2316..2328
Plasma membrane furrow formation is crucial in cell division and cytokinesis. Furrow formation in early syncytialDrosophila embryos is exceptionally rapid, with furrows forming in as little as 3.75 min. Here, we use 4D imaging to identify furrow formation, stabilization, and regression periods, and identify a rapid, membrane-dependent pathway that is essential for plasma membrane furrow formati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 386 2 شماره
صفحات -
تاریخ انتشار 2014